世界初の「量子竜巻」はいかにして生まれたのか

世界初の「量子竜巻」はいかにして生まれたのか

物理学者は、最も極端な物理的条件のいくつかにおいて、おそらくこれまでで最も小さな嵐を作り出した。

MIT とハーバード大学の量子研究者が作り出したこれらの「量子竜巻」は、量子力学の最新の実証である。量子力学とは、宇宙を最も微細な原子レベルまで支配する不思議な法則である。量子竜巻は、絶対零度よりほんの少し高い温度で渦巻くナトリウム原子の小さな雲からできている。

原子を極低温まで冷凍する方法は確立されている。まず、原子(多くの場合はアルカリ金属)を磁気ケージに閉じ込め、レーザーを照射する。冷却方法としてレーザーを使うのは奇妙に思えるかもしれないが、レーザーは 1 つの波長の光(この場合はナトリウムの蒸気の色に合わせるため黄色)のみのビームを生成する。レーザーを微調整すると、熱を発生しなくなるまで原子を減速させることができる。

最後に残るのはボーズ・アインシュタイン凝縮、つまり複数の原子がひとつの原子として機能し、想像を絶するさまざまな量子的な方法で動作する、愛すべきほどに難解な物質状態である。

[関連: 「量子スピン液体」と呼ばれる新しい物質状態がある]

ボーズ・アインシュタイン凝縮は奇妙に思えるかもしれないし、実際奇妙だが、物理学者が扱うのに慣れている一種の奇妙さだ。ボーズ・アインシュタイン凝縮は 1920 年代に初めて予測され、科学者は 1995 年に研究室でそれを作り出すことに成功した。その努力により、科学者たちは 2001 年のノーベル物理学賞を受賞した。

それ以来、物理学の世界ではボース・アインシュタイン凝縮を新たな高み(あるいは、新たな低み)に押し上げようとする試みが盛んに行われている。例えば、物理学者たちは、この物質状態で凍結した原子を回転させることができるかどうか、長い間考えてきた。

研究者たちがこの研究に興味を持ったのは、それが量子ホール液体と呼ばれるものの足跡をたどるからである。簡単に言うと、特定の量子条件と磁場の下では、通常は互いに押しのけるはずの電子の雲が、代わりに互いの特性を模倣し始める。その結果、電子は液体中の水分子のように自由に流れるようになる。

電子を観察するのは難しいが、物理学者はボーズ・アインシュタイン凝縮体を渦の中で回転させると、原子が同じように振る舞うようになるのではないかと考えた。原子は電子よりもはるかに大きいので、これは魅力的だ。

この最新の研究グループだけが渦を起こそうとしているわけではない。そこで課題となるのは、ボーズ・アインシュタイン凝縮を破壊せずに原子を回転させることだ。

「本質的に、この回転を制御するのは少し難しいのです」と、最新の実験には参加していないバージニア大学の物理学者ピーター・シャウス氏は言う。「どうにかして回転させる事は簡単ですが、加熱せずに回転させるのは難しいのです。」

磁気的に帯電したナトリウム結晶の密度プロファイルとシミュレーションは回転流を示している。Mukherjee et al. 2022

ハーバード大学とMITの研究グループは、100万個のナトリウム原子を捕らえ、絶対零度より1000億分の1ケルビン高い温度まで冷却し、強力な電磁石の中に閉じ込めるという実験を行った。そして、量子流体の動きを観察できるのではないかと期待しながら、凝縮体を回転させた。

それはある程度までうまくいった。原子は、彼らが探していた流体の特性を持つ細い針のような構造を形成した。研究者たちは、ここまでの結果を2021年6月にサイエンス誌に発表した。

しかし、彼らはさらに先へ進むことができることを知っていました。何が起こるかを見るために、針を回し続けることにしました。そして、彼らは驚くべきことに気付きました。針が波打ち始めたのです。最初は、針はコルク抜きのように巻き付き始めました。その後、巻き付きが解けて、針は小さな量子の塊の集まりに砕け散り、それぞれが回転し始めました。これが量子竜巻です。

研究者たちはこれをカオス理論と比較している。これらの竜巻の発生は、蝶の羽が羽ばたいて地球の反対側で嵐を引き起こすという有名な例に似ているが、そのプロセスは量子スケールで進行しているという点が異なる。彼らは今月初め、この渦についての説明をネイチャー誌に発表した。

[関連: 光が 100 兆分の 1 秒間点滅すると、奇妙な現象が発生する]

では、その先はどうなるのでしょうか。想像がつくと思いますが、このレベルで原子を協調させるのは簡単ではありません。「より安定したレーザーを手に入れて、これらの実験を効率的に実行するのは、まだ進行中の作業です」とシャウス氏は言います。「これらの実験の多くは、そのことが制限になっています。」

もう一つの課題は、これらの量子竜巻のうち最も小さいものにはそれぞれ 10 個の原子があったことです。しかし、物理学者の中には、さらに進んで、原子 1 個だけでボーズ・アインシュタイン凝縮体を実現できると考える人もいます。それが実現すれば、物理学者が量子力学の難解な方程式のいくつかが現実世界でどのように展開するかを観察するのに大いに役立つでしょう (少なくとも非常に高性能なカメラを使って)。

科学者たちは、こうした渦や極低温物質の他の形状を作り出すプロセスの改良を続けており、その成果はセンサーなどの技術に応用されるかもしれない。MITとハーバード大学の共同研究は、回転する凝縮体を使って水中の微妙な動きを検知したいと考えている国防高等研究計画局(DARPA)の資金提供を受けている。しかし、今のところ、微妙な動きは実現できていない。

<<:  テッポウウオの系統樹は、これまでで最もよく知られているスナイパーフィッシュの進化の記録である。

>>:  ジェイムズ・ウェッブ宇宙望遠鏡は最初の衝突を生き延びた

推薦する

参考までに:気候変動により竜巻の発生頻度が増加(そして増加)する可能性がありますか?

科学者は、気候変動によって異常気象の可能性が高まることには概ね同意しているが、温暖化した世界で竜巻が...

JWST、燃える超新星残骸の中に中性子星の証拠を発見

ジェイムズ・ウェッブ宇宙望遠鏡(JWST)を使用する天文学者たちは、37年にわたる謎のかくれんぼの勝...

赤ちゃんアザラシは注目されたいときに低音で歌う

ゼニガタアザラシは生後数週間から、声の調子を変えて自分の声を届けることができる。これは、アザラシも人...

海王星、タイタン、木星、冥王星が新しい写真で美しく見える

超大型望遠鏡から見た海王星。ESO/P. Weilbacher (AIP)今週、天文学者たちが太陽系...

銀河の年齢を尋ねるのは失礼です。幸いなことに、その形状が手がかりを与えてくれます。

銀河は、渦巻き状の風車から平らなパンケーキ、丸い球まで、さまざまな形をしています。現在、天体物理学者...

ほとんどの人間には尻尾がありません。では、なぜ尻尾の骨があるのでしょうか?

2 月は、私たちの体の形を整え、酸素を供給し、ビーチを長時間歩くときにエネルギーを与えてくれる体の...

ジェイムズ・ウェッブ宇宙望遠鏡が初の太陽系外惑星を発見した

ジェイムズ・ウェッブ宇宙望遠鏡(JWST)は、2021年のクリスマスの日に打ち上げられて以来、そのデ...

遺伝子特許の今後はどうなるのか?

米最高裁判所は昨日、遺伝性乳がんの発症リスクに影響を与える2つの主要な遺伝子変異を調べる世界で唯一の...

このアナグマのような哺乳類は恐竜を食べようとして死んだかもしれない

約1億2500万年前、肉食哺乳類と大型草食恐竜が死闘を繰り広げた。しかし、最も奇妙なのは、おそらく哺...

2021年は記録上6番目に暑い年だった

世界中の科学者によると、ここは暑くなってきているそうです。ここというのは、地球全体のことです。木曜日...

ジョン・スタインベックの1966年の海洋のためのNASA設立の嘆願

人類が初めて月面に着陸する 3 年前、ノーベル賞作家のジョン・スタインベックは、ポピュラーサイエンス...

偽物、噂、詐欺:PopSciの秋号は非現実的

これは本物のアニー・コルベールがあなたにメッセージを送っているのです。何千ものランダムなツイート、何...

未知の宇宙を切り開く

陽子は永続的な存在です。最初の陽子はビッグバンのわずか 0.00001 秒後に宇宙の混沌とし​​た泡...

PopSci Q&A: 卵を使わない卵の探求

起業家のジョシュ・テトリック氏は、料理で最も化学的に複雑な材料の 1 つである卵の代替品として、昨年...

何千人もの人々が火星で死ぬことをいとわない理由

編集者注: Mars One は最近、候補者を 100 名に絞り込みました。その多くは 2014 年...