アルバート・アインシュタインは、一般相対性理論を思いついたとき、反物質の存在を知りませんでした。一般相対性理論は、それ以来、重力に関する私たちの理解を支配してきました。1 世紀以上経った今でも、科学者たちは、私たちの体内や周囲に存在する粒子の捉えどころのない鏡像である反物質に重力がどのように影響するかについて議論を続けています。言い換えると、反物質の液滴は下に落ちるのか、それとも上に落ちるのかということです。 物理学の常識では、反物質は下に落ちるはずだとされている。一般相対性理論の原理である弱等価原理自体が、重力は物質か反物質かを気にするべきではないことを示唆している。一方で、少数の専門家は、反物質が上に落ちることで、例えば、宇宙を支配している可能性のある神秘的なダークエネルギーを説明できるかもしれないと主張している。 偶然にも、素粒子物理学者たちは今、反物質が落下するという最初の直接的な証拠を手にした。CERNを拠点とする国際チーム、反水素レーザー物理学装置(ALPHA)共同研究は、初めて反物質に対する重力の影響を測定した。ALPHAグループはその研究をネイチャー誌に発表した。 今日。 [関連: 物質とは何か? それはあなたが考えるほど基本的なものではありません。] 宇宙のあらゆる粒子には、質量が同じで電荷が反対の反物質の反射があります。その逆は自然界には隠れていますが、宇宙線で検出され、何十年も医療画像診断に使用されています。しかし、実際に意味のある量の反物質を生成するのは困難です。なぜなら、物質の粒子とその敵対者が出会うと、2つは自己破壊して純粋なエネルギーになってしまうからです。したがって、反物質はすべての物質から注意深く隔離する必要があり、そのため、反物質を落としたり、何らかの方法で反物質で遊んだりすることが非常に困難になります。 「反物質に関することは、すべて困難だ」と、デンマークのオーフス大学の物理学者でALPHAグループのメンバーであるジェフリー・ハングスト氏は言う。「反物質を扱わなければならないのは本当につらいことだ」 さらに難しいのは、重力が原子や素粒子のミクロレベルでは極めて弱いことです。物理学者は 1960 年代初頭、負の電荷ではなく正の電荷を持つ陽電子、つまり反電子に対する重力の影響を測定することを初めて考えました。しかし残念なことに、その同じ電荷によって陽電子は微小な電場の影響を受けやすくなり、電磁力が重力の力を上回ってしまうのです。 そのため、重力が反物質に与える影響を適切にテストするために、研究者は中性粒子を必要とした。カリフォルニア大学バークレー校の物理学者でALPHAグループのもう1人のメンバーであるジョエル・ファジャンズ氏は、「唯一の「地平線上の1つ」は反水素原子だった」と語る。 反水素は反周期表の最初で最も基本的な元素です。一般的な水素原子が 1 つの陽子と 1 つの電子で構成されているのと同様に、基本的な反水素原子は 1 つの負に帯電した反陽子と軌道を回る陽電子で構成します。物理学者が反水素原子を生成したのは 1990 年代になってからで、2010 年まで反水素原子を捕獲して保存することはできませんでした。 「私たちはそれを作る方法を学ばなければなりませんでした。次に、それを保持する方法を学ばなければなりませんでした。そして、それとやり取りする方法を学ばなければなりませんでした。」とハンスト氏は言う。 これらのハードルを乗り越えて、研究者たちはついに反水素の特性、たとえば重力下での挙動を研究することができた。ALPHA グループは新しい論文のために、反水素が早期に消滅するのを防ぐため、物質のない垂直のチューブの周りに垂直の真空チャンバーを設計した。科学者たちはチューブの一部を超伝導の磁気「ボトル」の中に包み、磁場を作り出して、必要なときまで反水素を所定の位置に固定した。 この装置を作るのに何年もかかった。「自分たちが何をやっているのか理解するために、反物質をまったく使わずに磁場を研究するだけで何百時間も費やした」とハングストは言う。反水素を保持できるほど強い磁場を作るために、彼らは装置を華氏マイナス452度に冷やさなければならなかった。 ALPHA グループは次に磁場を弱めてボトルの上部と下部を開き、反水素原子をチューブの壁に衝突するまで解き放った。彼らは原子の死がどこで起きたか、つまり反物質が保持されていた位置の上か下かを測定した。原子の約 80 パーセントはトラップの数センチ下に落ちたが、これは同じ設定で通常の水素原子の雲がどうなるかと一致している (残りの 20 パーセントは単に飛び出した)。 「実験はとても楽しかったです」とファジャンス氏は言う。「人々はこの問題について100年も考え続けてきました…今や決定的な答えが見つかりました。」 現在、世界中の他の研究者らがこの成果を再現しようとしている。その中には、反水素原子に焦点を当てている CERN の他の 2 つの共同研究機関、GBAR と AEgIS も含まれる。ALPHA チーム自身も、結果に対する信頼性を高めるために実験を改良したいと考えている。 たとえば、ネイチャー誌の研究論文の著者らが反水素原子が重力で下向きに加速する速度を計算したところ、通常の水素原子の場合に物理学者が予測する速度の 75 パーセントであることがわかった。しかし、より正確な結果を得るためにこれらの観察を繰り返すと、この食い違いはなくなると著者らは期待している。「この数値とこれらの不確実性は、実験で重力がどのようになるかについての私たちの最善の予測と本質的に一致しています」と、マンチェスター大学の物理学者で ALPHA グループのもう 1 人のメンバーであるウィリアム・バーチェは言う。 しかし、重力が物質と反物質に異なる方法で影響を及ぼす可能性もある。このような異常は、弱い等価原理、ひいては一般相対性理論全体に疑問を投げかけることになるだろう。 この重要な疑問を解くことで、宇宙の誕生についてもさらなる答えが得られるかもしれません。反物質は物理学の未解決の大きな謎の 1 つ、なぜ私たちは反物質をもっと見ないのか、という疑問の中心にあります。物理法則は、ビッグバンによって物質と反物質が同量生成されたはずだと明確に定めています。もしそうなら、宇宙の 2 つの半分は誕生後すぐに自滅したはずです。 [PopSci+関連記事: 世界最大の粒子加速器がビッグバン後のプラズマをいかにして作り出そうとしているか] 代わりに、私たちが観測する宇宙は物質で満たされ、バランスをとる目に見える反物質は存在しません。ビッグバンによって説明できない物質の過剰が生じたか、あるいは未知の何かが起こったかのどちらかです。科学者はこの宇宙の謎をバリオン生成問題と呼んでいます。 「水素と反水素の間に見つかった違いは、バリオン生成問題に対する極めて重要な手がかりとなるだろう」とファジャンズ氏は言う。 |
>>: この寄生虫は粘液のスライムボールを展開して「ゾンビアリ」を作る
今週学んだ最も奇妙なことは何ですか? それが何であれ、PopSci の最新のポッドキャストを聞けば、...
酢は、人々が思い浮かべるべきほど頻繁には使われない食材の 1 つです。酢は主にサラダ ドレッシングや...
オーストラリアの研究チームが、人類が文化的に受け継いできた儀式として最古のものと思われる考古学的証拠...
約2億年前のジュラ紀には、ルーフェンゴサウルスと呼ばれる恐竜が、現在の中国南部の雲南省に生息していた...
2020年6月21日、マリウス・ステピエンさんは農家の畑に何が見つかるかを見に向かった。その日曜日に...
2023年9月18日午前7時40分更新: 死者数の変化を反映してこの記事は更新されました。マウイ島で...
NASA のハッブル宇宙望遠鏡は、遠くの星々を取り囲む破片のかなり広範囲な画像調査を終えたばかりで...
タイラー・スラッシャーとテリー・マッジ著『100色の宇宙:科学と自然からの奇妙で不思議な色』より抜粋...
カート・ヴォネガットの言うことに反して、土星最大の衛星タイタンは訪れるのにあまり楽しい場所ではないだ...
目を閉じて眠りに落ちると、私たちの心の中で、歯が抜けたり、空に浮かぶ巨大なマシュマロの中で跳ね回った...
この記事は3Mの提供によるものです。特にソーシャルメディアに多くの時間を費やす人であれば、世の中には...
レストランのメニューの説明から、その料理の味がどのようなものかよくわかります。しかし、カタログの香水...
国連の気候変動に関する政府間パネル(IPCC)は、スイスで1週間にわたる会議を経て、気候変動に関する...
宇宙で最も複雑な星雲の 1 つとして知られる NGC 6543 は、キャッツアイ星雲としても知られ、...
言語学者ニコラス・エバンズ氏は、オーストラリア北部の先住民族カイアディルト族が浜辺で「マルジ」と発音...